Servicii multilingve de analiză a sentimentelor
ascultă, înțelege.
Analizați emoțiile și sentimentele umane prin interpretarea nuanțelor din recenziile clienților, știrile financiare, rețelele sociale etc.
Clienți prezentați
Împuternicirea echipelor să construiască produse AI de top la nivel mondial.
Se spune, pe bună dreptate, că afacerile bune își ascultă întotdeauna clienții, dar întrebarea este dacă ei îi înțeleg cu adevărat? Înțelegerea sentimentelor, emoțiilor sau intențiilor umane este adesea considerată dificilă. Soluția? Analiza sentimentelor – Este o tehnică de a deduce, de a evalua sau de a înțelege imaginea pe care produsul, serviciul sau marca dumneavoastră o poartă pe piață.
Twitter:
Potrivit unui studiu, 360,000, tweet-urile sunt postate pe Twitter în fiecare minut
E-mailuri:
40% dintre angajați primesc între 26-75 de e-mailuri pe zi
Serviciile multilingve de analiză a sentimentelor pentru NLP vă ajută să obțineți un scor mare la experiența clienților
Soluție din lumea reală
Analizați datele pentru a înțelege sentimentul utilizatorilor
Odată cu creșterea rețelelor sociale, oamenii își împărtășesc adesea experiențele cu produsele și serviciile online prin bloguri, vloguri, articole de știri, povești de rețele sociale, recenzii, recomandări, rezumate, hashtag-uri, comentarii, mesaje directe, micro-influențe etc.
Shaip vă oferă diferite tehnici, cum ar fi detectarea emoțiilor, clasificarea sentimentelor, analiza detaliată, analiza bazată pe aspecte, analiza multilingvă etc. pentru a descoperi perspective semnificative din emoțiile și sentimentele utilizatorilor. Vă ajutăm să determinați dacă sentimentul din text este negativ, pozitiv sau neutru. Limbajul este adesea ambiguu sau extrem de contextual, ceea ce face extrem de dificil ca mașinile să învețe fără asistență umană și, prin urmare, datele de antrenament adnotate de oameni devin critice pentru platformele ML.
Cum putem ajuta
- Efectuați o analiză a sentimentului textului, de exemplu:
- Comentarii despre produs
- recenzii de servicii
- recenzii de filme
- reclamații/feedback-uri prin e-mail
- apeluri și întâlniri cu clienții
- Analizați conținutul rețelelor sociale, inclusiv:
- Tweets
- Facebook mesaje
- Comentarii pe blog
- Forumuri -Quora, Reddit
- Furnizați date multilingve de analiză a sentimentelor ca date de antrenament pentru învățarea automată
Beneficii
- Analizați și procesați seturi mari de date
- Folosiți inteligența umană pentru a determina cu exactitate sentimentul clienților
- O forță de muncă flexibilă, formată din experți în domeniu
- Creșteți pe măsură ce creșteți
- 95% rezultate de calitate asigurată
Beneficii pentru afaceri
- Monitorizați starea de sănătate a mărcii
- Gestionați reputația mărcii
- Analiza concurenței
- Îmbunătățirea serviciului clienți
- Campanii de marketing mai bune bazate pe pulsul audienței tale
Tipuri de parametrii de analiză a sentimentelor
Polaritate
se concentrează pe recenziile pe care marca dvs. le primește online (pozitive, neutre și negative)
Emoțiile
se concentrează pe emoția pe care produsul sau serviciul dvs. aprinde în mintea clienților dvs. (fericit, trist, dezamăgit, entuziasmat)
Urgenţă
se concentrează pe imediata utilizare a mărcii dvs. sau pe găsirea unei soluții eficiente la problemele utilizatorilor (urgente și așteptabile)
intenţie
se concentrează pe a afla dacă utilizatorii dvs. sunt interesați să vă folosească produsul sau marca sau nu
Tipuri de servicii de analiză a sentimentelor
Detectarea emoțiilor
Această metodă determină emoția din spatele utilizării mărcii dvs. într-un scop. De exemplu, dacă au cumpărat articole de îmbrăcăminte din magazinul dvs. de comerț electronic, ar putea fie să fie mulțumiți de procedurile dvs. de expediere, de calitatea îmbrăcămintei sau de gama de selecții sau să fie dezamăgiți de acestea. În afară de aceste două emoții, un utilizator s-ar putea confrunta și cu orice emoții specifice sau cu un amestec de emoții din spectru. Unul dintre deficiențele acestui tip este că utilizatorii au o multitudine de moduri de a-și exprima emoțiile – prin text, emoji, sarcasm și multe altele. Modelul ar trebui să fie foarte evoluat pentru a detecta emoția din spatele expresiilor lor unice.
Analiză fină
O formă mai directă de analiză implică aflarea polarității asociate mărcii dvs. De la foarte pozitiv la neutru la foarte negativ, utilizatorii pot experimenta orice atribut referitor la marca dvs., iar aceste atribute ar putea lua o formă tangibilă sub formă de evaluări (de exemplu, bazate pe stele) și tot ce trebuie să facă modelul dvs. este să analizeze aceste diferite forme de evaluări. din surse diverse.
Analiză bazată pe aspecte
Recenziile conțin adesea feedback și sugestii solide, pe de altă parte, analiza sentimentelor bazată pe aspecte vă duce un pas mai departe. Aici, utilizatorii subliniază în general unele lucruri bune sau rele în recenziile lor, în afară de evaluări și exprimarea emoțiilor. De exemplu – Asociatul de la biroul de turism a fost extrem de nepoliticos și letargic. A trebuit să așteptăm o oră înainte de a obține itinerariul nostru pentru acea zi.”
Ceea ce se află sub emoții sunt două concluzii majore din operațiunile tale de afaceri. Acestea ar putea fi remediate, îmbunătățite sau recunoscute prin analize bazate pe aspecte.
Analiza multilingvă
Aceasta este evaluarea sentimentelor în diverse limbi. Limba poate depinde de regiunile în care operați, țările în care expediați și multe altele. Această analiză implică utilizarea minării și a algoritmilor specifici limbii, a traducătorilor în absența acesteia, a lexiconelor de sentiment și multe altele.
Cazuri de utilizare cheie
Monitorizarea mărcilor
Monitorizarea social media
Vocea clientului
Serviciu clienți
De ce Shaip
Pentru a vă implementa eficient inițiativa AI, veți avea nevoie de volume mari de seturi de date de instruire specializate. Shaip este una dintre puținele companii de pe piață care asigură date de instruire de clasă mondială, fiabile la scară, care respectă cerințele de reglementare/GDPR.
Capabilitati de colectare a datelor
Creați, organizați și colectați seturi de date personalizate (text, vorbire, imagine, video) de la peste 100 de țări de pe tot globul, pe baza unor reguli personalizate.
Forță de muncă flexibilă
Profitați de forța noastră de muncă globală de peste 30,000 de colaboratori cu experiență și acreditare. Alocarea flexibilă a sarcinilor și capacitatea forței de muncă în timp real, eficiența și monitorizarea progresului.
Calitate
Platforma noastră proprietară și forța de muncă calificată utilizează mai multe metode de control al calității pentru a îndeplini sau depăși standardele de calitate stabilite pentru colectarea seturilor de date de instruire AI.
Diverse, precise și rapide
Procesul nostru eficientizează, procesul de colectare prin distribuirea mai ușoară a sarcinilor, gestionarea și captarea datelor direct din aplicație și interfața web.
Securitatea datelor
Păstrați confidențialitatea completă a datelor făcând confidențialitatea noastră prioritatea. Ne asigurăm că formatele de date sunt controlate și păstrate prin politici.
Specificitatea domeniului
Date curatate specifice domeniului colectate din surse specifice industriei pe baza ghidurilor de colectare a datelor clienților.
Resurse recomandate
BLOG
Ce, de ce și cum din analiza sentimentelor
Analiza sentimentelor este procesul de deducere, măsurare sau înțelegere a imaginii pe care produsul, serviciul sau marca dvs. o poartă pe piață. Dacă acest lucru sună prea complicat, să o rafinăm mai mult.
Soluţie
Date de antrenament AI pentru recunoașterea facială
Detectează automat una sau mai multe fețe umane pe baza reperelor faciale dintr-o imagine sau videoclip. Căutați într-o bază de date existentă de fețe umane pentru a compara și potrivi pentru a construi o platformă inteligentă de recunoaștere facială.
BLOG
Recunoașterea entității denumite (NER) – Conceptul, tipurile și aplicațiile
De fiecare dată când auzim un cuvânt sau citim un text, avem capacitatea naturală de a identifica și clasifica cuvântul în oameni, loc, locație, valori și multe altele. Oamenii pot recunoaște rapid un cuvânt, îl pot clasifica și pot înțelege contextul.
Utilizarea inteligenței artificiale pentru a îmbunătăți performanța afacerii prin experiența clienților
Întrebări frecvente (FAQ)
Analiza sentimentelor este procesul de deducere, măsurare sau înțelegere a imaginii pe care produsul, serviciul sau marca dvs. o poartă pe piață. Dacă acest lucru sună prea complicat, să o rafinăm mai mult. Analiza sentimentelor este, de asemenea, considerată minare de opinie. Odată cu creșterea rețelelor sociale, oamenii au început să vorbească mai deschis despre experiențele lor cu produsele și serviciile online prin bloguri, vloguri, povești de rețele sociale, recenzii, recomandări, rezumate, hashtag-uri, comentarii, mesaje directe, microinfluențe și suntem sigur că poți să-ți faci singur o listă. Când acest lucru se întâmplă online, lasă o amprentă digitală a expresiei unei experiențe individuale. Acum, această experiență poate fi pozitivă, negativă sau pur și simplu neutră. Analiza sentimentelor este extragerea tuturor acestor expresii și experiențe online sub formă de texte.
- Polaritate: se concentrează pe recenziile pe care marca dvs. le primește online (pozitive, neutre și negative)
- Emoții: se concentrează pe emoția pe care produsul sau serviciul dvs. aprinde în mintea clienților dvs. (fericit, trist, dezamăgit, entuziasmat)
- Urgenţă: se concentrează pe imediata utilizare a mărcii dvs. sau pe găsirea unei soluții eficiente la problemele utilizatorilor (urgente și așteptabile)
- Intenție: se concentrează pe a afla dacă utilizatorii dvs. sunt interesați să vă folosească produsul sau marca sau nu
- Pe bază de reguli: Aici definiți manual o regulă pentru modelul dvs. pentru a efectua o analiză a sentimentelor asupra datelor pe care le aveți. Regula ar putea fi un parametru despre care am discutat mai sus – polaritate, urgență, aspecte și multe altele.
- Automat: Acest aspect al analizei sentimentelor funcționează complet pe algoritmii de învățare automată. În acest sens, nu este nevoie de intervenția umană și de a stabili reguli manuale pentru ca un model să funcționeze. În schimb, este implementat un clasificator care evaluează textul și returnează rezultate.
- Hibrid: Cele mai precise dintre modele, abordările hibride îmbină cele mai bune din ambele lumi – bazate pe reguli și automate. Sunt mai precise, funcționale și preferate de companii pentru campaniile lor de analiză a sentimentelor.
- Detectarea emoțiilor
- Analiză fină
- Analiză bazată pe aspecte
- Analiza multilingvă
O analiză a sentimentelor rețelelor sociale măsoară sentimentele clienților și spune online sentimentele clienților despre marca sau produsul dvs., analizând emoțiile, evaluările și opiniile utilizatorilor.
- Monitorizarea mărcii
- Monitorizarea social media
- Cercetare de piata
- Vocea clientului
- Serviciu clienți